APPLICATION NOTE
 VACUUM FLUORESCENT DISPLAY MODULE

GRAPHIC DISPLAY MODULE

GP9002A01A

GENERAL DESCRIPTION
FUTABA GP9002A01A is a graphic display module using a FUTABA 128×64 VFD.
Consisting of a VFD, display drivers and a control circuit, the module can be driven by connecting to the host system through a simple interface.

$\$$ Important Safety Notice

Please read this note carefully before using the product.

Warning

- The module should be disconnected from the power supply before handling.
- The power supply should be switched off before connecting or disconnecting the power or interface cables.
- The module contains electronic components that generate high voltages (approx.64V) which may cause an electrical shock when touched.
- Do not touch the electronic components of the module with any metal objects.
- The VFD used on the module is made of glass and should be handled with care. When handling the VFD, it is recommended that cotton gloves be used.
- The module is equipped with a circuit protection fuse.
- Under no circumstances should the module be modified or repaired.

Any unauthorized modifications or repairs will invalidate the product warranty.

- The module should be abolished as the factory waste.

1. FEATURES 1
2. GENERAL DESCRIPTION
2-1. DIMENSIONS, WEIGHT 1
2-2. SPECIFICATIONS OF THE DISPLAY PANEL 1
2-3. ENVIRONMENT CONDITIONS 1
2-4. ABSOLUTE MAXIMUM RATINGS 2
2-5. RECOMMENDED OPERATING CONDITIONS 2
2-6. ELECTRICAL CHARACTERISTICS 2
3. BASIC FUNCTION
3-1. FUNCTION TABLE 3
3-2. FUNCTION OF SIGNAL LINES 3
3-3. COMMAND TABLE 4
3-4. RELATIONSHIP OF THE DISPLAY AREA TO 5
3-5. FUNCTION OF COMMANDS 6~10
4. INTERFACE CONNECTION 11
5. TIMING CHART
5-1. THE PARALLEL INTERFACE 12
5-2. SYNCHRONOUS SERIAL INTERFACE 13~14
5-3. INT TIMING 14
6. THE INITIALIZE AFTER POWER- ON 14
FIGURE-4 OUTER DIMENSION 15
FIGURE-5 CIRCUIT BLOCK DIAGRAM 16
FIGURE-6 FONT TABLE 17
7. WARRANTY 18
8. CAUTIONS FOR DETERMINING AND EXPORTING 18 REGULATED GOODS OR SERVICES
9. CAUTIONS FOR OPERATION 18

1. FEATURES

1-1. High quality and long life can be achieved with FUTABA VFD.

1-2. It consists of a control ASIC and a power circuit.
1-3. Compact and light weight unit by using packed display drivers and one chip VFD controller.

1-4. The Interface can be selected from 8bit Parallel or synchronous serial.
2. GENERAL DESCRIPTION

2-1. DIMENSIONS, WEIGHT (Refer to FIGURE-4)
Table-1

Item	Specification	Unit
Outer dimensions	(W) 103 ± 1 (H) 53.5 ± 1 (T) 22.2 MAX.	mm
Weight	Approx. 85	g

2-2. \quad SPECIFICATIONS OF THE DISPLAY PANEL

Table-2

Item	Specification	Unit
Display Area	$57.48(\mathrm{~W}) \times 28.68(\mathrm{H})$	mm
Number of Dots	128×64	Dot
Dot Size $(\mathrm{H} \times \mathrm{W})$	0.33×0.33	mm
Dot Pitch $(\mathrm{H} \times \mathrm{W})$	0.45×0.45	mm
Color Illumination (VFD)	Green $(\lambda \mathrm{p}=505 \mathrm{~nm})$	-
Luminance	$500(\mathrm{Typ})$	$\mathrm{cd} / \mathrm{m}^{2}$

Note) By using a filter, uniform color range from blue to orange (including white) can be obtained.

2-3. ENVIRONMENT CONDITIONS

Table-3

Item	Symbol	Min.	Max.	Unit
Operation Temperature	$T \mathrm{opr}$	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T \mathrm{stg}$	-40	+85	${ }^{\circ} \mathrm{C}$
Operating Humidity	$H \mathrm{Hopr}$	20	85	$\%$
Storage Humidity	$H \mathrm{stg}$	20	90	$\%$
Vibration $(10 \sim 55 \mathrm{~Hz})$	-	-	4	G
Shock	-	-	40	G

[^0]
2-4. ABSOLUTE MAXIMUM RATINGS

Table-4

Item	Symbol	Min.	Max.	Unit
Supply Voltage	$V \mathrm{cc}$	-0.3	6.0	V
Input Signal Voltage	V_{I}	-0.5	$V \mathrm{cc}+0.5$	V

2-5. RECOMMEND OPERATING CONDITIONS

Table-5

Item	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage	$V \mathrm{cc}$	4.5	5.0	5.5	V
H-Level Input Voltage	V_{IH}	$V \mathrm{cc} \times 0.7$	-	$V \mathrm{cc}$	V
L-Level Input Voltage	V_{IL}	0	-	$V \mathrm{cc} 2 \times 0.3$	V

2-6. ELECTRICAL CHARACTERISTICS

Table-6

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply Current	Icc	$\begin{gathered} V \mathrm{cc}=5.0 \mathrm{Vdc} \\ \text { All on } \end{gathered}$	-	500	650	mA
Power Consumption	-		-	2.5	3.5	W
Luminance (VFD)	L		250	500	-	$\mathrm{cd} / \mathrm{m}^{2}$
H-Level Output Voltage	V_{OH}	$I_{\mathrm{OH}}=-2 \mathrm{~mA}$	Vcc-0.6	-	Vcc	V
L-Level Output Voltage	$V_{\text {OL }}$	$I_{\text {OL }}=2 \mathrm{~mA}$	0	-	0.4	V

Note) The surge current can be approx. 5 times the specified supply current at power on.

3. BASIC FUNCTION

3-1. Function Table
3-2. Function of Signal Lines
3-3. Command Table
3-4. Relationship of The Display Area to Address and Data
3-5. Function of Commands

3-1. Function Table

Table-7

$\overline{\mathrm{CS}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	$\mathrm{C} / \overline{\mathrm{D}}$	MODE
L	\uparrow	H	H	Command Write-in
L	\uparrow	H	L	Data Write-in
L	H	L	H	-
L	H	L	L	Data Read-out

note)If the interface is selected Serial, please refer to 5-2 Timing Chart.
3-2. Function of Signal Lines
Table-8

Signal	I / O	Function
$\mathrm{D} 0 \sim \mathrm{D} 7$	I / O	8bit Data Bus
$\overline{\mathrm{WR}}$	I	Write Signal
$\overline{\mathrm{RD}}$	I	Read Signal
$\overline{\mathrm{CS}}$	I	Chip Select Signal
$\mathrm{C} / \overline{\mathrm{D}}$	I	Command / Data Select Signal $\mathrm{C} / \overline{\mathrm{D}}={ }^{\prime} \mathrm{H}^{\prime}:$ Command $\mathrm{C} / \overline{\mathrm{D}}=$ "L" : Data Write and Data Read
INT	O	Frame Signal (One output pulse per one display frame)
SEL	I	Port to switch the interface. Open: Parallel Connect to GND: synchronous serial
SCLK	I	Synchronous Clock Signal
SI	I	Synchronous Input Signal
SO	O	Synchronous Output Signal
Vcc	-	+5 V
GND	-	GND

3-3.Command Table

The followings are all commands of this module.
After writing the command, necessary setting data should be written.
Table-9

Command $\left(\mathrm{C} / \overline{\mathrm{D}}={ }^{\prime} \mathrm{H}^{\prime}\right)$	Setting Data $(\mathrm{C} / \overline{\mathrm{D}}=\mathrm{=} \mathrm{~L} ")$	Function	Default Select
00H	-	$1{ }^{\text {st }} \& 2^{\text {nd }}$ Screens are Displayed off	\bigcirc
01H	-	$1{ }^{\text {st }}$ Screen is Displayed on	
02H	-	$2^{\text {nd }}$ Screen is Displayed on	
04H	-	Read/Write address is automatically incremented	\bigcirc
05H	-	$\mathrm{Read} / \mathrm{Write}$ address is held	
06H	-	Clear Screen	
07H	D0~D7	Control Power supply	00H
08H	D0~D7	Display data write-in	
09H	$\mathrm{D} 0 \sim \mathrm{D} 7$	Display data read-out	
0AH	D0~D7	Setting lower address for $1^{\text {st }}$ Screen started	00H
0BH	D0~D3	Setting upper address for $1^{\text {st }}$ Screen started	00H
0CH	D0~D7	Setting lower address for ${ }^{\text {nd }}$ Screen started	00H
0DH	D0~D3	Setting upper address for ${ }^{\text {nd }}$ Screen started	00H
0EH	D0~D7	Setting lower address of Read/Write	00H
0FH	D0~D3	Setting upper address of Read/Write	00H
10H	-	Display OR of $1^{\text {st }} \& 2^{\text {nd }}$ Screens	
11H	-	Display EX-OR of ${ }^{\text {st }} \& 2^{\text {nd }}$ Screens	
12 H	-	Display AND of $1^{\text {st }} \& 2^{\text {nd }}$ Screens	
13H	D0~D7	Luminance Adjustment	00H
14H	D0~D7	Display Mode	00H
15H	D0~D7	INT Signal Mode	00H
20H	D0~D7	Display Character	
21H	D0~D7	Setting the Character Starting Location of RAM	$\begin{gathered} \hline(\mathrm{X}, \mathrm{Y}) \\ =(00 \mathrm{H}, \\ 00 \mathrm{H}) \end{gathered}$
22 H	D0~D7	Setting Size of Character	$\begin{gathered} (\mathrm{X}, \mathrm{Y}) \\ =(00 \mathrm{H}, \\ 00 \mathrm{H}) \\ \hline \end{gathered}$
24H	D0~D7	Setting Brightness of Character	00H

Note) "-" in the above table is shown that the setting data is not needed.

3－4．Relationship of The Display Area to Address and Data The following map is shown in case of 000 H or display start address．
The actual display area is the part of enclosing with the solid line of FIG． 1 and FIG．2． FIG． 1 \＆FIG． 3 indicate the map at start address to set to 000 H ．

FIG． 1 Position of display dot to address and data

		\sim	$\checkmark \mathrm{m}$		$\stackrel{\sim}{\sim}$	（ ${ }_{\sim}^{\infty}$	ํ			等	$\cdots \sim$
$$	읻	－${ }_{\text {c }}^{\text {c }}$	0	∞			号			－島	馬 ${ }_{\text {c }}$
家	俱	気	－	a		江 0	\overbrace{i}^{n}		\％	（2）	꼳
$$	$\underset{\sim}{\underset{N}{N}}$	$\stackrel{y}{c}$	～	＜	$\stackrel{4}{\text { en }}$	Nㅜㅇ	$\underset{\sim}{1}$		U		N．
$$	쏙	足	m	\propto	$\stackrel{\sim}{\sim}$	m			Nٌ	$\stackrel{n}{2}$	쏟
	$\stackrel{y}{\mathrm{t}}$	号	\rightarrow	0			${ }_{n}^{2}$		U	우N	罦
	$\stackrel{n}{n}$	吴	in	\bigcirc	－		n_{n}^{n}		へ－		䦽
信	品	呍	c_{0}	［1	－					듯	栜
$\begin{array}{cc} \hat{n} \\ 0 \\ 0 \\ \hat{0} \\ \hline \end{array}$	$\stackrel{\text { N }}{\wedge}$	$\stackrel{y}{\text { E }}$	－	\pm	－	荡号	$\underset{\sim}{n} \underset{\sim}{n}$		岂	気	気空

FIG． 3

FIG． 2 Indicate the map at start address to set to 7 F 0 H
Note）If the Screen mode is selected Gray scale mode，The total RAM area is 128×64 ．

3-5. Function of Commands

3-5-1. Screen Display on / off Control (00H, 01H, 02H, 03H)
The latest command becomes effective.
At power on, $1^{\text {st }}$ and $2^{\text {nd }}$ screens are set to Display off mode.
Therefore, the Display on mode command should be written in, after display pattern data input. In case of executing Display on mode before display data input at initial, random pattern may be displayed.

3-5-2. Setting of Write Address Mode ($04 \mathrm{H}, 05 \mathrm{H}$)
These commands select either the write or read address is incremented by single step automatically or is held after data write and data read.
When a memory address is set to 7 FFH , next memory address is set to 000 H .

3-5-3. Clear Screen (06H)

Data of all area of screen RAM are filled with 00 H .
After this command, all command is canceled in approximately $260 \mu \mathrm{~s}$.

3-5-4. Control Power supply (07 H)

The Power supply in the module is turned off by this command.
Table-10

Mode	D7	D6	D5	D4	D3	D2	D1	D0
Power ON	0	0	0	0	0	0	0	0
Power OFF	0	0	0	0	0	0	0	1

3-5-5. Data Write (08H)
After executing the Write address setting command, this command shall be executed. The following indicate the display data $55 \mathrm{H}, \mathrm{AAH}$ and 01 H write-in.

3-5-6. Data Read (09H)

After executing the Read address setting command, this command shall be executed.
Dummy read is necessary. The correct data can be read from the second byte.
The following indicate the display data read out.

3-5-7. Setting of Display Start Address (0AH, 0BH, 0CH, 0DH)
The display start address is just pointed to the left and top line of the display area. $1^{\text {st }}$ and $2^{\text {nd }}$ screens can be independently set the display start address each other.
This address is divided to the two portions with upper (four bits) and lower (eight bits) address, and lower address shall be set first, then set the upper address.
The smooth scroll of displaying can be achieved by synchronizing with the change of display address by the INT signal at every frame.
The following indicate the display start address of $1^{\text {st }}$ screen to set to 23 EH .

3-5-8. Setting of Write/Read Address (0EH, 0FH)
This command is set the write/read address of displaying data.
This address is divided the two portions with upper (four bits) and lower (eight bits) address, and lower address shall be set first, then set the upper address.
Only the upper address is available to be changed independently.
When the lower address is changed, it is required to change the both address.

3-5-9. Screen OR / EX-OR / AND Display Select (10H, 11H, 12H)

The latest command becomes effective. These commands set both $1^{\text {st }}$ and $2^{\text {nd }}$ screens on.

3-5-10. Luminance Adjustment (13H)
 Write-in data allows luminance to be adjusted.
 When the module is turned on, it is set to level 100%.

Table-11

Luminance	Input Data	
	No gray scale mode	Gray scale mode
100% (Max.)	00 H	00 H
90%	06 H	07 H
80%	0 CH	0 EH
70%	12 H	15 H
60%	18 H	1 CH
50%	1 EH	24 H
40%	24 H	2 BH
30%	2 AH	32 H
0% (Display blank)	FFH	FFH

Note1) Write-in data (FFH) allows luminance to be 0%.
Note2) Write-in data is available from 00 H to 2 AH with no gray scale mode.
Note3) Write-in data is available from 00 H to 32 H with gray scale mode.
Note4) Write-in data (from 2BH to FEH) prohibits with no gray scale mode.
Note5) Write-in data (from 33H to FEH) prohibits with gray scale mode.

3-5-11. Display Mode (14H)
When the module is turned on, it has to be selected the following display mode before other command is sent.
The display mode can be selected no gray scale mode or gray scale mode with 4 levels of brightness.

Table-12

Mode	D7	D6	D5	D4	D3	D2	D1	D0
No gray scale mode	0	0	0	1	0	0	0	0
Gray scale mode	0	0	0	1	0	1	0	0

If the mode is gray scale, each dot has one of 4 brightness levels.
The relationship between the data and the display brightness is as follows. 4 levels gradation is able to be displayed 1 dot by 2 bits data of D7-D6, D5-D4, D3-D2, and D1-D0.

3-5-12. INT Signal mode (15H)

This command sets the mode of INT signal.
Table-13

Signal Mode	D7	D6	D5	D4	D3	D2	D1	D0	
No signal	0	0	0	0	0	0	0	0	
Positive	$\boxed{ }$	0	0	0	0	0	0	0	1
Negative		0	0	0	0	0	0	1	1

3-5-13. Display Character (20H)
By this command character can be displayed.
Character location of the RAM and Font is applied by the following commands.

- Setting the Character Starting Location of RAM (Command 21H)
- Setting Size of Character (Command 22H)
- Setting Brightness of Character (Command 24H)

After this command, the data should be written as string.
If the character is displayed, the location of character will be moved.
The following indicate when the string " ABCD " is displayed.

3-5-14. Setting the Character Starting Location of RAM (21H)
By this command the location of character is set.
X and Y should be set.

3-5-15. Setting Size of Character (22H)
By this command the size of character is set.
X and Y should be set.

Table-14

Size	X	00H	Normal
		01H	Double width
		02H	Triple width
		03H	Quad width
	Y	00H	Normal
		01H	Double height
		02H	Triple height
		03H	Quad height

Note) The only $\mathrm{Y}=00 \mathrm{H}$ can be set with grey scale mode.

3-5-16. Setting Brightness of Character (24H)

By this command the brightness of character is set.
Table-15

Gray Scale number	00 H	Brightness 3/3
	01 H	Brightness $2 / 3$
	02 H	Brightness $1 / 3$

Note) This command is invalid with no gray scale mode.

4. INTERFACE CONNECTION

The using connector: 2213-20G (NELTRON Industrial)
(a) Selected the Parallel (SEL is open)

Table-16

Pin No.	Description	Pin No.	Description
1	D 0	2	D 1
3	D 2	4	D 3
5	D 4	6	D 5
7	D 6	8	D 7
9	GND	10	INT
11	$\overline{\mathrm{WR}}$	12	$\overline{\mathrm{RD}}$
13	$\overline{\mathrm{CS}}$	14	$\mathrm{C} / \overline{\mathrm{D}}$
15	Vcc	16	Vcc
17	Vcc	18	GND
19	GND	20	SEL (open)

Note1) All GND pins are connected in the module.
Note2) Please don't connect any to the No.20(SEL).
(b) Selected the synchronous serial (SEL is connected to GND.)

Table - 17

Pin No.	Description	Pin No.	Description
1	N.C. (open)	2	N.C. (open)
3	N.C. (open)	4	N.C. (open)
5	N.C. (open)	6	N.C. (open)
7	N.C. (open)	8	SO
9	GND	10	INT
11	CLK	12	SI
13	$\overline{\mathrm{CS}}$	14	$\mathrm{C} / \overline{\mathrm{D}}$
15	Vcc	16	Vcc
17	Vcc	18	GND
19	GND	20	SEL (GND)

Note1) All GND pins are connected in the module.
Note2) Please connect GND to the No.20(SEL).

5. TIMING CHART

5-1. The Parallel interface

5-1-1. Write-in timing

1) The time of each one byte access is neccessary with 600 ns min.

5-1-2. Read-out timing

1) The time of each one byte access is neccessary with lus min.

5-2 Synchronous serial interface

The SI signal should be input from the LSB.
The SI signal is gotten when the SCLK rises.
The distinction of SI signal between DATA and COMMAND depends C/D signal when CS is down.

Ex.1) Display data write-in (the way to write 2 bytes of display data.)
Table-18

Step	Content from host	Epexegesis
1	Output 'H' to C/D	
2	CS \downarrow	The usage of SI signal after this step is determined. By the step1, The SI signal is command because of C/D=‘H'.
3	Send 08 H to SI	Command 08H Display data write-in
4	CS \uparrow	5 Output 'L' to C/D
6	CS \downarrow	The usage of SI signal after this step is determined. By the step5, The SI signal is data because of C/D='L'. In addition, the 400ns interval needs between step4 and step 6.
7	Send 55H to SI	Display data 55H write-in
8	Send 21H to SI	Display data 21H write-in In addition, the 600ns interval needs between step7 and step 8.
9	CS \uparrow	

Ex.2) Display data read-out (the way to read 2 bytes of display data.)
Table-19

Step	Content from host	Epexegesis
1	Output 'H' to C/D	
2	CS \downarrow	The usage of SI signal after this step is determined. By the step1, The SI signal is command because of C/D='H'.
3	Send 09H to SI	Command 09H Display data read-out
4	CS \uparrow	
5	Output ‘L' to C/D	The usage of SI signal after this step is determined. By the step5, The SI signal is ignore because of C/D='L'. In addition, the 400ns interval needs between step4 and step 6.
6	CS \downarrow	Dummy read-out
7	Receive 1byte from SO	
8	Receive 1byte from SO	Display data read-out(First byte) In addition, the lus interval needs between step7 and step 8.
9	Receive 1byte from SO	Display data read-out (Second byte) In addition, the 1us interval needs between step8 and step 9.
10	CS \uparrow	

5-3. INT timing

INT signal synchronizes frame frequency. The module generates $65 \mu \mathrm{sec}$ of INT signal at every 8.4 msec .
For smooth scroll, Setting Start Address should be executed during period of INT="H".
($\mathrm{INT}=$ "L", if logic mode is negative.)

INT

6. THE INITIALIZE AFTER POWER-ON

Host should do the initialize after power-on.
The following command is used in initialize.

- command 14H Display Mode

Ex.) To turn on a pixel which located in $10^{\text {th }}$ from screen left end and $4^{\text {th }}$ from screen top end.
(Parallel Interface)
Table-20

Step	Content from host	Epexegesis
1	C/D='H' 14H WR \downarrow	Display Mode command
2	C/D $=^{\prime} \mathrm{L}^{\prime} 10 \mathrm{H}$ WR \downarrow	The display mode (no gray scale mode)
3	C/D='L' 06H WR \downarrow	Clear Screen (06H)
4	C/D='H' 01 H WR \downarrow	$1^{\text {st }}$ Screen is Displayed on (01 H)
5	C/D='H' OEH WR \downarrow	Setting lower address of Write
6	C/D='L' 48 H WR \downarrow	Setting lower address 48H
7	C/D='H' 0 FH WR \downarrow	Setting upper address of Write
8	$\mathrm{C} / \mathrm{D}={ }^{\prime} \mathrm{L}^{\prime} 00 \mathrm{H}$ WR \downarrow	Setting upper 3bits 000B
9	C/D='H' 08H WR \downarrow	Display data write-in(08H)
10	C/D $=^{\prime} \mathrm{L}^{\prime} 10 \mathrm{H}$ WR \downarrow	The display data 10 H

з0 $0123456789: 3<=>2$
aHECDEFGHI TKLHNO
PQRSTDOUROZ[$]^{\text {® }}$
vabedefani jkimno
farstupuxyzaty-I

7. WARRANTY

This display module is guaranteed for 1 year after the shipment from FUTABA.
8. CAUTIONS FOR DETERMINING AND EXPORTING REGULATED GOODS OR SERVICES This product does not correspond to the goods or services regulated by Japan's Foreign Exchange and Foreign Trade Law. If this product is combined with other products in order to make equipment, whether this product is regulated or not is judged by such newly made equipment. We ask you to determine by yourself whether the equipment corresponds to the regulated goods when this product is incorporated in the equipment.
We also ask you to confirm that this product will not be incorporated in any weapon or used for manufacturing any weapon.
If you export or re-export this product, we recommend you to adopt measures for appropriate export procedures, if any.
9. CAUTIONS FOR OPERATION

9-1. Applying lower voltage than the specified may cause non activation for selected pixels. Conversely, higher voltage may cause non-selected pixel to be activated. If such a phenomenon is observed, check the voltage level of the power supply.

9-2. The $\mathrm{DC} / \mathrm{DC}$ converter generates approximately 64 Vdc , avoid touching it with bare hands, or to other circuits.

9-3. Avoid using the module where excessive noise interface is expected.
Noise affects the interface signal and causes improper operation.
Keep the length of the interface cable less than 30 cm .
(When the longer cable is required, please confirm there is no noise affection.)
9-4. When power is turned off, the capacitor will not discharge immediately.
Avoid touching IC and others.
The shorting of the mounted components within 30 sec., after power off, may cause damage.

9-5. When fixed pattern is displayed for a long time, you may see uneven luminance. It is recommended to change the display patterns sometimes in order to keep best display quality.
$9-6$. $\mathrm{DC} / \mathrm{DC}$ converter is equipped on the module, the surge current may be approximately 5 times the specified supply current at the power on.

REMARKS :

The specification is subject to change without prior notice.
Your consultation with FUTABA sales office is recommended for the use of this module.

[^0]: Note) Avoid operations and or storage in moist environmental conditions.

